
Grants4Companies: Applying Declarative
Methods for Recommending

and Reasoning About Business Grants
in the Austrian Public Administration

(System Description)

Björn Lellmann1(B) , Philipp Marek2, and Markus Triska1

1 Bundesministerium für Finanzen, Vienna, Austria
{bjoern.lellmann,markus.triska}@bmf.gv.at
2 Bundesrechenzentrum GmbH, Vienna, Austria

philipp.marek@brz.gv.at

Abstract. We describe the methods and technologies underlying the
application Grants4Companies. The application uses a logic-based expert
system to display a list of business grants suitable for the logged-in busi-
ness. To evaluate suitability of the grants, formal representations of their
conditions are evaluated against properties of the business, taken from
the registers of the Austrian public administration. The logical language
for the representations of the grant conditions is based on S-expressions.
We further describe a Proof of Concept implementation of reasoning over
the formalised grant conditions. The proof of concept is implemented in
Common Lisp and interfaces with a reasoning engine implemented in
Scryer Prolog. The application has recently gone live and is provided as
part of the Business Service Portal by the Austrian Federal Ministry of
Finance.

Keywords: Applications · Expert systems · S-Expressions · Common
Lisp · Scryer Prolog

1 Introduction

Business grants are an important tool for steering and supporting the economy.
In addition, they can be used to quickly react to and counter crises. However,
the search for suitable business grants can be a challenge for companies and
businesses in Austria. This is due to the large number of available business
grants from a multitude of different providers. While there are dedicated search
engines, companies and businesses often are simply not aware of the existence
of grants on a specific topic, and hence cannot use these engines in a targeted
search.

As an additional tool for providing targeted information about potentially
interesting business grants to businesses the application Grants4Companies was
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
J. Gibbons and D. Miller (Eds.): FLOPS 2024, LNCS 14659, pp. 151–164, 2024.
https://doi.org/10.1007/978-981-97-2300-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/xxxx_9&domain=pdf
http://orcid.org/0000-0002-5335-1838
https://doi.org/10.1007/978-981-97-2300-3_9


152 B. Lellmann et al.

introduced. The application is part of the Austrian Unternehmensservicepor-
tal (USP)1 and is productive since November 2022 with around 50 visits per
month on average. The application uses data about available grants from the
Austrian Transparenzportal2 to formalise formal grant conditions, e.g., on the
type of business or the location of the head office. Data sources within the public
administration are queried and used to evaluate these formalised criteria, to dis-
play a list of grants ordered according to the feasibility of applying - i.e. whether
the business fulfils the criteria or doesn’t fulfil the criteria; a third category
contains grants for which the available information is not sufficient to decide.

While the application in the USP is written in Java3, we have also imple-
mented a Proof of Concept (PoC) for testing out new features, which we describe
in more detail in this article. In particular, this PoC contains a reasoning engine
for reasoning about the formalised grant conditions themselves. The main fea-
tures of the PoC are implemented in Common Lisp while the reasoning engine
is implemented in Scryer Prolog4, following the Lean Methodology [1] for imple-
menting proof search in logical calculi using Prolog’s backtracking mechanism.
The PoC is of interest for two reasons: First, it combines implementations in
Common Lisp and Scryer Prolog to leverage the strengths of each programming
language. Second, it provides an example and showcase for the use of declarative
programming languages in public administration. To the best of our knowledge,
such examples are currently rather rare.

The source code for the reasoning engine complete with examples of business
grants with their conditions is available under https://github.com/blellmann/
g4c-reasoner. While there is no openly accessible web interface, the reasoning
engine can be loaded into the Scryer Playground5, the freely accessible web
interface for Scryer Prolog, and used for running evaluations.

In the remainder of the article we first give a brief overview of the develop-
ment history (Sect. 2), followed by a description of the productive implemen-
tation of Grants4Companies (Sect. 3) and the technical details underlying the
representation of the grants as well as their evaluation (Sect. 4). We then provide
details about the PoC implementation (Sect. 5) including the implementation of
the reasoning engine and the interface between the Common Lisp implementa-
tion and the Prolog reasoner, before concluding with an outlook (Sect. 6). We
do not include any benchmark results or comparisons regarding efficiency of the
reasoning engine here, since the focus of the implementation is on correctness
instead of maximal efficiency, and it is part of a PoC implementation. Since
the examples of grants are taken from the official productive data set, we chose
to keep the original formulation of the examples and several concepts of the

1 The official Austrian portal for interaction between businesses and public adminis-
tration. See https://www.usp.gv.at/en/ueber-das-usp/index.html.

2 The official Austrian data base containing (amongst other information) data about
the available grants. See https://transparenzportal.gv.at.

3 Due to interoperability concerns with existing libraries.
4 See https://www.scryer.pl.
5 See https://play.scryer.pl.

https://github.com/blellmann/g4c-reasoner
https://github.com/blellmann/g4c-reasoner
https://www.usp.gv.at/en/ueber-das-usp/index.html
https://transparenzportal.gv.at
https://www.scryer.pl
https://play.scryer.pl


Grants4Companies 153

representation language in German, providing additional explanations in
English. The technical terms from Austrian legislation can of course be adapted
to other languages.

2 Development History

To assess the basic feasibility of the approach, we started with a pilot project,
using Common Lisp for rapid prototyping. Grants were expressed as Lisp forms,
a natural representation when working with Lisp. The pilot was successful, and
also served as an illustration and internal tool for communicating the approach
we planned. Already in this phase of the project, particular care was taken to
explain in the UX that company data would only be processed with explicit
user consent, and no data would be stored permanently by the planned service.
In order to demonstrate the key concepts without any legal concerns, the pilot did
not use any real company data, but only a fixed set of imaginary test companies.

For the production version of our service, we replaced the Common Lisp
engine with a Java-based implementation to align the engine with architec-
tural principles of surrounding IT services, and we retained the representation of
grants as Lisp forms. As a result, the Lisp-based pilot can still be seamlessly used
on the production data of the formalised grants to quickly prototype and assess
additional features, while the Java-based Lisp parser and evaluation engine can
also be used in other IT-services that require a Java implementation for archi-
tectural or other reasons. Only the production version of the service has access
to real company data, and explicit consent of the company is required.

An additional component is the Prolog-based reasoner described in Sect. 5.1.
This component can be used independently of the production environment to
reason about grants, and is freely provided in a public repository. This com-
ponent can reason with the productive formalised grants. Since the reasoning
concerns only logical relations between the grants themselves, no company data
is used by the reasoner.

3 Grants4Companies Overview

While the main focus of this article is the presentation of the PoC implementa-
tion of extended features for Grants4Companies, for context we briefly describe
the productive application. Grants4Companies is an application in the Austrian
Unternehmensserviceportal (USP)6. The USP is Austria’s main digital portal
for the interaction between public administration and businesses with currently
more than 600.000 registered businesses and more than 120 integrated applica-
tions. It also acts as identity provider for the businesses.

After logging into the USP and starting the application Grants4Companies,
businesses consent to the use of their data from registers of public administra-
tion in line with the GDPR [10]. Following this consent, the application fetches
6 See https://www.usp.gv.at/en/index.html.

https://www.usp.gv.at/en/index.html


154 B. Lellmann et al.

available data about the companies from registers of public administration. Cur-
rently the data sources are the Unternehmensregister and the Firmenbuch, the
data used concerns, e.g., information about the geographic location of the busi-
ness, its legal type, or the area of business following the Austrian version of
the NACE-classification7. The extension to further registers is planned. Com-
panies are then presented with a list of grants, ordered according to whether
the formal grant criteria are satisfied by the company, not satisfied, or cannot
be sufficiently evaluated based on the available data. The latter option caters
for potential unavailability of necessary data from the registers, due to lack of
coverage or also maintenance downtime of the registers. The results can be fil-
tered and sorted according to the evaluation result, categories of the grants, or
application date. A screenshot of the productive version is shown in Fig. 11.

The architecture of Grants4Companies follows that of classical knowledge
based systems, with a clear separation between the knowledge base, i.e., grant
definitions including the formalised grant criteria, and evaluation engine. The
evaluation engine of the productive version of Grants4Companies is implemented
in Java. The knowledge base contains currently 45 grants which were formalised
manually. The details of the formal language used for representing the grants
will be considered in Sect. 4.1. The knowledge base is stored in a GIT repository
to keep track of historical data, and enable version control, reproducibility and
data sharing. This knowledge base is shared with the PoC implementation.

4 Representation and Evaluation of the Grant Conditions

The knowledge base containing the grants with their formalised grant conditions
is based on data about Austrian grants contained in the Austrian Transparenz-
portal8, a portal provided by the Austrian Ministry of Finance, where funding
agencies are to enter grants and the granted funding. For the PoC and the ini-
tial productive version of Grants4Companies, a number of grants were formalised
manually by us, the current knowledge base contain 45 grants. In the future this
might be extended following a rules as code approach [6], e.g., using tools like
POTATO [5,8] for automatically suggesting formalised grant conditions based
on the natural language descriptions provided by the funding agencies.

4.1 Representation of the Grants

The grant conditions are formalised as quantifier-free logical formulae. The lan-
guage contains predicates for expressing properties of the businesses related to
location, legal form, classification of business activity, etc. Examples of atomic
formulae with their intended semantics are given in Fig. 1. For ease of use
by Austrian funding agencies, these predicates are formulated in German and
7 See https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:

Statistical_classification_of_economic_activities_in_the_European_Community
_(NACE).

8 See https://transparenzportal.gv.at/tdb/tp/startpage (in German).

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Statistical_classification_of_economic_activities_in_the_European_Community_(NACE)
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Statistical_classification_of_economic_activities_in_the_European_Community_(NACE)
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Statistical_classification_of_economic_activities_in_the_European_Community_(NACE)
https://transparenzportal.gv.at/tdb/tp/startpage


Grants4Companies 155

Atomic Formula Intended semantics
Betriebsstandort-in(L) The business has a location in one of the ar-

eas/regions specified in the list L
Rechtsform-in(L) The legal form of the business is one of those in

the list L
ÖNACE-in(L) The business activity classification falls under one

of the areas in the list L

Fig. 1. Examples of atomic formulae and their intended semantics

often take a list as argument. Complex formulae are built from the atomic
formulae as well as �,⊥ as usual using the standard propositional connec-
tives ¬,∨,∧,→. At the current state there was no need for quantifiers, these
might be added in the future. Working in a quantifier-free language has the
benefit of a greatly reduced complexity for the reasoning tasks, of course. For
the sake of referring to commonly used concepts, the language also contains
defined concepts. On the logical level, these are given as pairs (d,D) consist-
ing of the name d of the concept, which can be used like an atomic formula,
and its definition D, i.e., a formula not containing d. The definition might con-
tain other defined concepts, absence of cycles is assumed to be ensured exter-
nally. E.g., the concept of a legal person is introduced as the an abbrevia-
tion with name G4c/Grants_Gv.At:Ist-Juristische-Person for the formula
Rechtsform-in(L), where L = [Genossenschaft, Verein, . . . ] is a list of the
legal forms which count as legal persons in Austria. Naming the definitions in
the style of packages makes it possible to differentiate between concepts with
the same name from different funding agencies, e.g., general funding conditions
specific to the funding agencies.

On a technical level, the language used for representing the logical formulae is
based on the Lisp-syntax of S-expressions [2, 102]. In particular, the logical for-
mulae formalising the grant conditions are represented in prefix notation as lists,
where the first element is the logical connective and the following elements are its
arguments. E.g., a formula ¬A∧ (B ∨C) is represented as the S-expression (and
(neg A) (or B C)). Predicates are represented by (Common Lisp) symbols.
E.g., the predicate Betriebsstandort-in represents the fact that the business
has a location in one of a list of certain areas given by their Gemeindekennzahl,
the Austrian identification number for municipalities. To enable restriction also
on a regional or county level, also prefixes of these identification numbers are
covered. E.g., the atomic formula (Betriebsstandort-in 2 617 60101) rep-
resents the assertion that the business has a site in the county Carinthia, the
region East Styria, or the municipality of the city of Graz.

The full representation of a grant also contains in addition to the formalised
grant conditions also its name, metadata about application dates and links to
the full description on the Transparenzportal, as well as the natural language
description of the grant conditions. The latter are included as Lisp comments



156 B. Lellmann et al.

(def-concept gv.at:natürliche-oder-juristische-Person
(OR

(Rechtsform-in :Einzelunternehmen)
(gv.at:Ist-Juristische-Person)))

Fig. 2. The definition of the concept gv.at:natürliche-oder-juristische-Person.
The formula captures the condition that the applicant is a natural person, i.e., the legal
form of the company is that of a sole trader (:Einzelunternehmen), or a legal person
(captured by the defined formula gv.at:Ist-Juristische-Person).

interspersed with the formalised conditions in the spirit of literate program-
ming [4]. This allows to have human-readable explanations collected and used
for explaining the evaluation of a grant. An example of a grant in this representa-
tion is given in Fig. 3. Defined concepts (d,D) are represented as (def-concept
d D). An issue that came up right from the beginning is having one concept in
multiple different implementations. A clause specifying that the company has to
be a small or medium enterprise (SME, in German “Der Antragsteller muss ein
KMU sein”) is used in many grants; sadly there are three different definitions
for this term, one from the federal government in Austria, one from the EU, and
one from the FFG9. As mentioned, this ambiguity is solved via package names
- there are simply three functions, GV.AT:IS-KMU, FFG:IS-KMU, and EU:IS-KMU.
This enables the use of different interpretations of the same natural language
term depending on the source of the regulation. An example of a defined con-
cept is given in Fig. 2.

4.2 Evaluation of the Grants

Evaluating whether the formal conditions of a grant apply for a specific business
essentially corresponds to checking, whether the business is a model of the log-
ical formula representing these conditions. Here the business is identified with
its properties given by the data about the business available. The atomic formu-
lae are chosen to directly correspond to data fields from specific registers and
hence their evaluation is rather straightforward. Complex formulae are evaluated
according to their main logical connectives. Names d for defined concepts (d,D)
are unpacked into their definition D and then evaluated.

Of course not all the data required to evaluate whether a company satisfies
the formalised eligibility criteria of a grant is necessarily always available. While
data like location of a company needs to be provided before it is officially recog-
nized, e.g., the (Ö)NACE classification10 of the economic activities of Austrian
businesses is not complete. In particular, for a sizeable number of companies the
ÖNACE-classification has not yet been assigned. In addition, the connection to
a specific register might drop out temporarily due to maintenance work.
9 The Österreichische Förderagentur für wirtschaftsnahe Forschung, Entwicklung und
Innovation, in English Austrian Research Promotion Agency.

10 https://www.statistik.at/en/databases/classification-database.

https://www.statistik.at/en/databases/classification-database


Grants4Companies 157

Fig. 3. Example grant, TP-Nr.1052703. The grant provides funding for
increasing energy efficiency. It is applicable to natural and legal persons
(GV.AT:natürliche-oder-juristische-Person) in the city of Villach (the
Unternehmenssitz or a Betriebsstandort has to be in the municipal identifi-
cation number 20201). Some other conditions cannot be checked automatically based
on the data about the company available within public administration and hence
are not formalised (e.g., that the request for funding has to be submitted at most 8
months after implementing the measures for increasing energy efficiency).

To cover these eventualities, the evaluation is done in a three-valued logic,
which allows a third truth value of unknown next to true and false. The log-
ical connectives then propagate the truth value unknown upwards, whenever
no definite evaluation to true or false is possible. To be precise, we use (so
far quantifier-free) strong Kleene-Logic K3, considered, e.g., in [3]. The truth
tables for the logical connectives are given in Fig. 5. This ensures that grants
which have been evaluated for a company to true or false while some of their
atomic components are evaluated to unknown are evaluated with the same result



158 B. Lellmann et al.

Fig. 4. Example grant in Prolog syntax, TPPNr#1052703. For the original formulation
of this particular grant, see Fig. 3

Fig. 5. The truth tables for 3-valued strong Kleene logic K3. The truth values false,
unknown, true are represented by ⊥, u and �, respectively.

when additional data becomes available and some of the atomic components are
no longer evaluated as unknown. Range-based reasoning for numeric operations
would also be possible, and is planned as future work.

As a further potential next step, the symbolic representation also allows for
some easy optimizations – for commutative connectives/operations (like AND, OR,
possibly in the future also numerical addition via +), we could reorder the argu-
ments before evaluating. By moving the subformula with the highest probability
for a negative result to the front, a short-cutting evaluation could quickly discard
grant/company pairs, allowing for mass assessments: given a newly proposed
grant, how many companies in Austria will (be able to) apply? This reordering
is not implemented yet, though.

5 PoC: Extensions and Interfaces

The PoC also contains an implementation of the evaluation of grant conditions
based on company data. However, for the purpose of this article we concen-
trate on the functionality which goes beyond that of the productive system.
In particular, the representation of grant conditions as logical formulae opens
the possibility to not just evaluate the conditions based on business data, but



Grants4Companies 159

to also reason about the conditions themselves. Interesting questions here are
in particular consistency, useful for discovering mistakes in the formalisation
of grant conditions, and logical implication, useful for finding unintended over-
lap between multiple grants in the same area. To enable such reasoning, we
implemented backwards proof search in a Gentzen-style sequent calculus (see,
e.g., [9] for the proof-theoretic background). Following the Lean-methodology [1]
we make use of Prolog’s backtracking mechanism to perform the proof search.

We use Scryer Prolog due to its strong conformance to the Prolog ISO stan-
dard, which will ease future cooperations with other organizations and public
administrations. In addition, the system is freely available and allows inspec-
tion of its entire source code, which works towards our aim of providing full
transparency and explainability of all computed results.

5.1 Symbolic Reasoning over Grants

The Proof-of-Concept has the ability to connect one or more Scryer Prolog11
sessions to the web frontend, providing a convenient REPL that is pre-loaded
with some known facts and the transpiled grant forms (see Fig. 4). We included
a prototypical implementation of logical reasoning over the formalised eligibil-
ity criteria in the form of a sequent calculus, specifically a G3-style calculus for
classical (propositional) logic (see, e.g. [9]), extended to cover basic facts about
atomic statements and the defined concepts. We use reasoning in classical logic
and not the three-valued logic used for evaluating the grants, because reasoning
about the logical properties of grant conditions is independent of the data avail-
able for particular businesses. A calculus for the three-valued logic used could
be implemented, e.g., following [7]. However, this would be useful mainly for
reasoning about which grants are shown to the business with which evaluation.

As usual, sequents are of the form A1, . . . , An ⇒ B1, . . . , Bm with n,m ≥ 0
and are interpreted as the logical formula A1 ∧ · · · ∧ An → B1 ∨ · · · ∨ Bm. The
standard logical rules are given in Fig. 6. Basic knowledge about implications
between atomic statements is included in the form of (rather simple) ground
sequents, and defined concepts are included in the form of separate left- and
right rules for each defined concept. The ground sequents and rules for unpack-
ing the defined concepts are given in Fig. 7. Cut-free completeness of the calculus
follows from an extension of [9, Thm.4.6.1] to the calculus with defined formu-
lae, noting that the set of ground sequents is closed under substitutions (because
no variables occur), contraction and basic cuts. In order to avoid unnecessary
repetitions, in the implementation the rules are given as facts about the term
rule(Name, Prem_List/PF), where Name is the name of the rule, Prem_List is
the list of premisses and PF is the principal formula of the rule, i.e., a sequent
with exactly one formula on the left or right hand side. The provability pred-
icate is given by prov2//2, which is true if the first argument is a derivable
sequent, and the second argument a term describing a corresponding derivation.
Examples are given in Fig. 8. The auxiliary predicate merge_sequent_list//3

11 See www.scryer.pl.

www.scryer.pl


160 B. Lellmann et al.

Fig. 6. The sequent rules of the propositional part of calculus G3

Fig. 7. The ground sequents and definition rules used in the calculus. In the definition
rules the pair (d, D) is a defined concept.

is true if the first argument contains a list Γ1 ⇒ Δ1, ..., Γn ⇒ Δn of pre-
misses, i.e., sequents, the second argument contains a sequent Σ ⇒ Π, and
the third argument contains the list of premisses merged with this sequent, i.e.,
Γ1, Σ ⇒ Π,Δ1, . . . , Γn, Σ ⇒ Π,Δn. Since the rules of the calculus are invert-
ible, we could introduce prolog cuts ! after the goals rule(Rule_name, ...) to
increase efficiency – this would not influence completeness wrt. derivability of
sequents. However, since this would limit the number of derivations found, and
to preserve monotonicity of the program, we refrain from doing so.

The result of querying for logical implication between the formalised eligi-
bility conditions of two grants is shown in Fig. 9. The prolog variable Tree is
instantiated with a term for the derivation of the result abbreviated here for the
sake of better readability.

The terms representing derivations can also be converted into human-
readable form in a formalised natural language using Prolog’s Definite Clause
Grammars. The result is a string containing html-code which can be displayed
in a browser, see Fig. 10.



Grants4Companies 161

Fig. 8. Examples of the Prolog code for rules of the sequent calculus.

5.2 Interface Between Lisp and Prolog

To enable the reasoning functionality from within the Lisp-part of the PoC,
the prolog prover is called and its output on std_out interpreted. For this, the
implementation of a basic interface was necessary.

Conversion from Grant-Code in Lisp-Syntax to Prolog. Since the for-
malised grant conditions are given in the syntax of S-Expressions, they need
to be converted to Prolog terms. While there is an existing project that tran-
spiles S-expressions to ISO Prolog12, it didn’t fit our usecase; this library only
allows batch processing and not the desired interactive querying, the already-
parsed internal grant structure isn’t supported, and a few special-cases demand
a non-verbatim translation. In our implementation, negation and the typical
infix operators AND and OR get printed out with parenthesis, to ensure the right
precedence – the Prolog side ignores superfluous parens anyway.

Parsing Prolog Output. Custom parsing of Prolog output provides a nice
special case: At the beginning of an output block, one or more lines containing
a string beginning with the sequence <html> are recognized and displayed ver-
batim; this way a human-readable version of the derivations can be created in
Prolog by nesting <div>s as necessary. Some CSS provided by the POC is then
used by the browser to provide a nice visual display. Regular prolog output is
parsed via the ESRAP library.

12 https://github.com/cl-model-languages/cl-prolog2.

https://github.com/cl-model-languages/cl-prolog2


162 B. Lellmann et al.

Fig. 9. Reasoning over grants. The query is shown at the top. The variables F1 and F2
are instantiated with the names of grants, such that the conditions K1 of the first one
imply the conditions K2 of the second one. The variable Tree is instantiated with the
derivation witnessing provability of the sequent K1 ⇒ K2, abbreviated here for the sake
of space.

Fig. 10. HTML output of a Prolog reasoning.



Grants4Companies 163

Fig. 11. The productive version of Grants4Companies. This figure shows the main
page with a short description at the top and the list of grants. The grants are sorted
with the applicable ones shown at the top of the list, the not applicable ones at the
bottom, and the ones requiring further data for a conclusive evaluation in the middle.
The list can be filtered, e.g., according to the topic of the grant, in this case “economy”
(“Wirtschaft”).



164 B. Lellmann et al.

6 Conclusion and Outlook

We presented Grants4Companies, an application in the Austrian public admin-
istration, which uses declarative methods to recommend business grants based
on the data available for the businesses from sources in the public administra-
tion. We also presented the Proof of Concept implementation of logical reasoning
over the formalised grant conditions, implemented in Common Lisp and Scryer
Prolog. A main interest here lies in the fact that the PoC implementation uses
declarative and logical methods in the context of an application, which is already
live in public administration.

In terms of future work we are steadily extending the list of covered grants,
and are considering automatised rules extraction methods (e.g., [5,8]) for speed-
ing up this process. Extending the coverage of the grants will necessitate the
extension of the logical language and hence the reasoning mechanisms to further
concepts and also towards (limited) reasoning with natural numbers. We envis-
age the resulting tool to become a possible basis for systematic analyses of the
Austrian landscape of business grants by stakeholders in funding agencies and
public administration.

References

1. Beckert, B., Posegga, J.: Logic programming as a basis for lean auto-
mated deduction. J. Log. Program. 28(3), 231–236 (1996). https://doi.org/10.
1016/0743-1066(96)00054-4. https://www.sciencedirect.com/science/article/pii/
0743106696000544

2. Belzer, J., Holzman, A., Kent, A.: Encyclopedia of Computer Science and Tech-
nology: Volume 10 - Linear and Matrix Algebra to Microorganisms: Computer-
Assisted Identification. Taylor & Francis (1978)

3. Kleene, S.C.: Introduction to Metamathematics. North-Holland, Amsterdam
(1952)

4. Knuth, D.: Literate programming. Comput. J. 27(2), 97–111 (1984)
5. Kovács, A., Gémes, K., Iklódi, E., Recski, G.: Potato: explainable information

extraction framework. In: Proceedings of the 31st ACM International Conference
on Information & Knowledge Management, CIKM 2022, pp. 4897-4901. Association
for Computing Machinery, New York (2022). https://doi.org/10.1145/3511808.
3557196

6. Mowbray, A., Chung, P., Greenleaf, G.: Representing legislative rules as code:
reducing the problems of ‘scaling up’. Comput. Law Secur. Rev. 48, 105772 (2023)

7. Multlog: Analytic proof systems for strong Kleene logic K3 (2022). pdf generated
by MULTLOG, v.1.16a. https://logic.at/multlog. https://logic.at/multlog/kleene.
pdf

8. Recski, G., Lellmann, B., Kovács, A., Hanbury, A.: Explainable rule extraction via
semantic graphs. In: ASAIL 2021. CEUR Workshop Proceedings, pp. 24–35 (2021)

9. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts In The-
oretical Computer Science, vol. 43, 2nd edn. Cambridge University Press, Cam-
bridge (2000)

10. European Union: Regulation (EU) 2016/679 of the European parliament and of
the council of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing
directive 95/46/EC (general data protection regulation). OJL (2016)

https://doi.org/10.1016/0743-1066(96)00054-4
https://doi.org/10.1016/0743-1066(96)00054-4
https://www.sciencedirect.com/science/article/pii/0743106696000544
https://www.sciencedirect.com/science/article/pii/0743106696000544
https://doi.org/10.1145/3511808.3557196
https://doi.org/10.1145/3511808.3557196
https://logic.at/multlog
https://logic.at/multlog/kleene.pdf
https://logic.at/multlog/kleene.pdf

