Grants4Companies: The Common Lisp PoC

Philipp Marek
Bundesrechenzentrum GmbH
Vienna, Austria
philipp.marek@brz.gv.at

ABSTRACT

The application Grants¢Companies was recently introduced in the
Austrian Federal Business Portal (Unternehmensserviceportal, USP).
The productive application displays a list of business grants which
apply to a business depending on the data available about this busi-
ness in the systems of Austrian public administration. In this article
we describe the underlying Proof of Concept implementation, used
to experiment with and test new features. This PoC implementation
is written in Common Lisp, interfaces with a Prolog-reasoner, and
makes use of formalised grant descriptions based on S-expressions.

CCS CONCEPTS

« Theory of computation — Automated reasoning; « Computing
methodologies — Knowledge representation and reasoning;
« Software and its engineering — Context specific languages.

KEYWORDS

S-Expressions, Expert System, Applications

ACM Reference Format:

Philipp Marek, Bjérn Lellmann, and Markus Triska. 2024. Grants4Companies:
The Common Lisp PoC. In Proceedings of the 17th European
Lisp Symposium (ELS’24). ACM, New York, NY, USA, 6 pages.
https://doi.org/10.5281/zenodo.10992449

1 INTRODUCTION

Business grants offer vital funding opportunities for businesses and
companies, and at the same time provide an important tool for sup-
porting and steering economy. The efficiency of this tool, however,
depends on whether it is easily possibly for businesses to find the
suitable grants. In order to support businesses in this search in Aus-
tria we recently introduced the application Grants4dCompanies in
the Austrian Unternehmensserviceportal' (USP, the Business Service
Portal). The USP is the main portal for contact between businesses
and public administration in Austria, currently serving over 120 in-
tegrated applications and more than 600.000 registered businesses.

The application Grants4Companies was introduced in November
2022 and offers registered businesses the possibility to evaluate a list
of business grants based on the data available for the business from
sources in Austrian public administration. For this purpose, formal
eligibility criteria of a number of business grants are formalised in a

Uhttps://www.usp.gv.at/en/index.html

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ELS’24, May 6-7 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-X/YY/MM

https://doi.org/10.5281/zenodo.10992449

ELS 2024

Bjorn Lellmann
Bundesministerium fir Finanzen
Vienna, Austria
bjoern.lellmann@bmf.gv.at

Markus Triska
Bundesministerium fiir Finanzen
Vienna, Austria
markus.triska@bmf.gv.at

logical language. The descriptions and eligibility criteria are based
on the Transparenzportal?, the official Austrian portal containing a
wealth of data about Austrian funding possibilities for businesses as
well as natural persons. Following the explicit consent for using the
data available for the registered business, the formalised eligibility
criteria are evaluated based on data from Austrian registers. The
registers queried are currently the Unternehmensregister fiir die
Zwecke der Verwaltung® (Administrative business register, a register
collecting data about businesses from several sources in Austrian
public administration) and the Firmenbuch* (Austrian company
register). An extension to further registers is planned. The available
grants are then presented to the business based on the evaluation
of their criteria as “criteria are satisfied”, “criteria are not satisfied”
or “information is missing for sufficiently evaluating the criteria”.

To quickly evaluate different strategies, ideas, and concepts, we
implemented a Proof-of-Concept (POC) in Common Lisp in De-
cember 2019; over time we extended this POC to experiment with
and test new features. In this article we describe the POC imple-
mentation and the underlying design choices. Differences between
the POC and the productive software are noted as well. The POC
also includes an interface to a logical reasoning engine for prov-
ing properties of the grants (or combinations thereof) which are
independent of the particular businesses. This reasoning engine is
implemented Prolog. Here we focus on the Lisp-specific parts of
the POC and refer the reader to the companion paper [5] for the
detailed description of the interface to the Prolog reasoning engine.

2 THE INITIAL PROOF-OF-CONCEPT

The POC is written in Common Lisp. Apart from personal pref-
erences the reasons consisted of easier symbolic manipulation,
quicker iteration cycles, and better performance. Based on that
data point, choosing S-expressions as grant definition format (see
Sec. 3) certainly looks like an easy and logical choice, and indeed
was selected after careful deliberation. Apart from reading grant
definitions, type-checking them, allowing evaluation against (fake)
company data (the POC has no connection to the production reg-
ister data bases), and converting the grant code back to natural
language, the POC also acquired (limited) symbolic capabilities:
given a company, which data points (e.g., HQ location) need chang-
ing to match additional grants? Other symbolic computations were
made available by transpiling the grant code to Prolog and pro-
viding a Prolog REPL in the web interface; this allows queries like
Which grant totally includes another grant?. For further discussion
of this topic please see the already mentioned companion paper [5].

Zhttps://transparenzportal.gv.at/tdb/tp/startpage
Shttps://www.statistik.at/en/databases/business- register/administrative-business-
register-abr

“https://www.justiz.gv.at/service/datenbanken/firmenbuch.36f.de.html

12

ELS’24, May 6-7 2024, Vienna, Austria

3 GRANT LANGUAGE AND SEMANTICS

There are a few thousand programming languages, even without
counting the one-offs that are used by less than 10 people worldwide.
Some share a bit of syntax, others are completely different. As basis
for the formal language for specifying the grant conditions we
needed something

e casy to read,

e unambiguous,

o future-proof (ie. backwards-compatible even for vastly
changed situations),

e and easy to parse.

The first point means no XML; infix operators with their prece-
dences (see the presentation) are worse off for the second. One
format stood out as especially long lasting: S-Expressions. Partici-
pants of this ELS will already know, but the quick overview is:

e Evaluation from inner to outer, left to right within one form?®.
o No other precedence rules [6].
e Tokens are either atoms (numbers, strings, symbols), or

- an opening parenthesis,

— alist of (zero or more) tokens,

- and a closing parenthesis.
o Comments are introduced with one or more semicolons (com-
patible with Common Lisp), but are not discarded but asso-
ciated with the next form resp. the surrounding form. This
allows to have human-readable explanations collected and
used for explaining the evaluation of a grant.
For ease of use (and compatibility with Common Lisp), sym-
bols are defined to be case-insensitive; mixed case is not used.
In strings and comments the case is kept, though.

S-Expressions have been cited for these features for a long time[1,
102], even in completely different fields (e.g. music [3, p.171]).

3.1 Concepts of the Formalisation Language

One point that we pondered for quite some time was the actual
language used for the concepts of the formalisation language. We
finally decided on a German/English mix:

o The specific data-query-functions, i.e., atomic concepts, that
are derived from laws written in German were kept in Ger-
man (BETRIEBSSTANDORT-IN, ONACE-IN,...); the higher sim-
ilarity to the original law proved to be helpful in translating
to computer language.

e Typical programming “keywords” like AND, OR, NOT, used for
constructing complex expressions, were taken from English -
the higher familiarity with these (compared to "UND", "ODER",
"NICHT", which just remind us of Winword macros!) makes
them a better match.

3.2 Packages and Local Definitions

Grant definitions are stored in a GIT repository (for Version Con-
trol, Historical, Reproducability, and Data Sharing reasons). A di-
rectory tree definition ensures that each funding agency has their
own workspace (sub)directory; a scoping rule that reads all grants
within a directory into the same package allows funding agencies

5Common Lisp Hyperspec, 3.1.2.1.2.3 Function Forms

ELS 2024

Philipp Marek, Bjorn Lellmann, and Markus Triska

to define their own higher-level functions (see the presentation for
an example).

The package that gets created for each directory imports func-
tions from an API package automatically; so the most-often used
symbols can be referenced directly. In the future, some kind of
marker (eg. a specific filename like package . 1isp) might switch to
another behaviour: defaulting to another, improved API package,
or manually specifying a DEFPACKAGE form. This separation into
multiple packages also allows to divide up some responsibilities: by
having high-level constructs in an extra package, it becomes much
easier to maintain that in some separate organization.

An issue that came up right from the beginning is having one
concept in multiple different implementations. A clause “Der Antrag-
steller muss ein KMUP sein” is used in many grants; sadly there are
three different definitions for this term, one from the federal gov-
ernment in Austria, one from the EU, and one from the FFG’.

Making (optional) packages available solves this in a neat way -
there are simply three functions, GV.AT:IS-KMU, FFG: IS-KMU, and
EU: IS-KMU. This enables the use of different interpretations of the
same natural language term depending on the source of the reg-
ulation. Of course, the person digitizing the grant needs to know
which one to use, which is a separate can of worms.

3.3 Security

Of course, nothing is ever quite so simple. As the funding agency
is the (only) one who knows exactly what they want, they're the
logical choice for capturing the intent in computer code, and main-
taining it later on - including putting a cut-off date on it, or invali-
dating it some other way. Formalisation of the grants currently still
happens via a few people and not the funding agencies, as would
ideally be the case. But that means that the “code” (which is “data”
here as well) is then run on a different computer system: primarily
the central evaluation platform in the USP, but also decentralized
on some funding agency’s machine (when testing a grant), or po-
tentially at the Statistics Austria (when estimating the number of
businesses that potentially match some newly-defined grant). So
all kinds of concerns regarding security come up! To address these,
the specification says that only exported symbols from defined API
packages may be used - so it's not allowed (respectively possible) to
write (CL:WITH-OPEN-FILE (s "/etc/shadow") ...) inagrant
to hack the grant evaluation platform.

3.4 Example grant

An example of a grant definition is shown in Fig. 1.

4 EVALUATING GRANTS

As grant forms are by definition side-effect free, their evaluation is
in principle straightforward: Evaluate the atomic concepts based
on the available data, and recursively evaluate complex expressions
according to the outermost operator. In the productive version the
atomic concepts are evaluated based on the data available for the
logged-in business from public administration, while the POC uses

“KMU” means “Klein- und Mittelunternehmen”, ie. “small and medium-sized
companies’”.

"“FFG” is the abbreviation for “Osterreichische Forschungsforderungsgesellschaft” (in
English “Austrian Research Promotion Agency”), see https://www.ffg.at/en.

13

Grants4Companies: The Common Lisp PoC

ELS’24, May 6-7 2024, Vienna, Austria

(define-grant ("Umweltschutz- und Energieeffizienzforderung - Férderung sonstiger EnergieeffizienzmaBnahmen Villach"
(:href "https://transparenzportal.gv.at/tdb/tp/leistung/1052703.html")

(:transparenzportal-ref-nr 1052703)
(:Fordergebiet :Umwelt)
(gliltig-von "2019-01-01"))

"Unter der Berilcksichtigung der Verwendung erneuerbarer Energietrager sowie
der Umsetzung der Intention der Umweltschutz- und Energieeffizienzrichtlinie im
Bereich privater Haushalte fordert die Stadt Villach folgende EnergieeffizienzmaBnahmen."

;3 Voraussetzungen

)

;3 — Forderungswerber/innen konnen natlirliche oder juristische Personen sein.
NS Bei juristischen Personen hat die firmenmaBige bzw. statutenkonforme
B Unterfertigung des Antrages auf Gewdhrung einer Férderung durch den

B Vertretungsbefugten zu erfolgen.
(AND
(GV.AT:naturliche-oder-juristische-Person)

;3 — Die Forderungswerber haben bei der Antragstellung zu erkléaren, dass
B flir die beantragten Forderungen keine weiteren Forderungen von anderen Stellen

beantragt wurden.

;3 — Ein Forderungsansuchen muss spatestens innerhalb von 8 Monaten nach
Umsetzung der MaBnahme/n bzw. Kaufdatum bei der Stadt Villach einlangen
;3 - Die Forderung wird nur fir die sach- und fachgerechten Umsetzung der

S MaBnahme (Einbau) im Stadtgebiet von Villach gewahrt.

(OR
(Unternehmenssitz-in 20201)
(Betriebsstandort-in 20201))))

Figure 1: Example grant, TPPNr#1052703

dummy data of made-up businesses instead. Apart from this, there
are some finer points for taking into consideration.

4.1 Evaluation modes

Because there are two main use cases, the Proof-of-Concept in
Common Lisp implements two evaluation modes.

Fully Recursive, Exhausting Evaluation. In this mode all the forms
are evaluated and their intermediate results are kept; by reporting
these values in the same tree structure as the grant, manual verifi-
cation of the calculation can be performed (Fig. 2). This evaluation
mode is used when displaying grant results for a single company.

Fast Evaluation using Shortcut Properties. As the grants forms
are pure, we have a few degrees of freedom for manipulating them
or otherwise speed up evaluation. We implemented a short-circuit
evaluation which can quickly discard grant/company pairs, allow-
ing for faster mass assessments: given a newly proposed grant, how
many companies in Austria will be able to apply? For the future,
further optimisation are possible: for commutative operations (like
"AND", "OR", numerical addition via "+"), we can reorder the forms
before compiling. In the typical case of a top-level AND we can look
at the sub-forms, and move the one with the highest probability
for a negative result to the front, benefitting the short-circuiting
operation again. This reordering is not implemented yet, though®.

4.2 Three-valued Logic

Of course not all data required to evaluate whether a company sat-
isfies the formalised eligibility criteria of a grant is always available.

8See chapter 4.9 below.

ELS 2024

While data like location of a company needs to be provided before
it is officially recognised, e.g., the (O)NACE classification® is not
complete. In particular, for a sizeable number of companies the
ONACE-classification has not yet been assigned. In addition, a data
source might be not available, eg. due to maintenance work.

So the evaluation allows a value of unknown as well; many oper-
ations then need to propagate that unknown upwards. Easy cases
are OR with a true value or AND with a false value. To be precise,
we use (so far quantifier-free) strong Kleene-Logic K3, considered
e.g. in [4]. This ensures that grants which have been evaluated for a
company to true or false while some of their atomic components
are evaluated to unknown, get evaluated to the same result when
additional data becomes available and these components no longer
return unknown. Range-based reasoning for numeric operations
would also be possible, but is not implemented yet.

4.3 Extension to probabilities

A major difference between the POC and the production software
in the USP is that the POC already got extended to experiment with
a 12-bits+1 probability space, with false being at one end, true at
the other, and the unknown space spanning the values in between,
with the canonical 0.5 unknown value in the exact center of the value
range. This probability space gets evaluated Bayes-compatibly - so
an AND over three unknowns means 0.5 to the third power, or a
probability of 0.125. Of course this makes potentially problematic
assumptions about the independence of the sub-expressions of a
complex expression. The analysis on the suitability of this approach

“https://www.statistik.at/en/databases/classification- database

14

ELS’24, May 6-7 2024, Vienna, Austria

Philipp Marek, Bjérn Lellmann, and Markus Triska

#13: Umweltschutz- und Energieeffizienzforderung - Forderung sonstiger

EnergieeffizienzmalRnahmen Villach

Beschreibung: Unter der Berlicksichtigung der Verwendung ereuerbarer Energietré ger sowie der Umsetzung der Intention der Umweltschutz- und
Energieeffizienzrichtlinie im Bereich privater Haushalte fordert die Stadt villach folgende Energieeffizienzmanahmen,

hitps://transparenzportal.gv.at/tdb/tp/leistung /1052703 html

Ergebnis Beschreibung

Code cl5 Wert

Voraussetzungen - Forderungswerberfinnen konnen naturliche oder juristische Personen

° sein. Bei juristischen Personen hat die firmenmaRige bzw. statutenkonforme
Unterfertigung des Antrages auf Gewahrung einer Forderung durch den

Vertretungsbefugten zu erfolgen.

(AND [T,

- Die Forderungswerber haben bei der Antragstellung zu erklaren, dass fur die
beantragten Forderungen keine weiteren Forderungen ven anderen Stellen beantragt

° wurden. - Ein Férderungsansuchen muss spétestens innerhalb von 8 Monaten nach
Umsetzung der Malnahme/n bzw. Kaufdatum bei der Stadt villach einlangen - Die

Forderung wird nur fiir die sach- und fachgerechten Umsetzung der MaBnahme

(Einbau) im Stadtgebiet von Villach gewahrt.

2

=)

(UNTERNEHMENSSITZ -
IN 262017)

(BETRIEBSSTANDORT -

NTL
IN 262017))) i

Figure 2: Evaluated example grant with results.

and potential alternative ones is still ongoing, but its implementa-
tion in the POC means it is possible to experiment with the approach.
By explicitly avoiding saturation!?, the strong Kleene-Logic still
applies — but having a range of unknowns means that the output
category where it matters most can be sensibly sorted!

4.4 Numeric calculations in the POC

The POC includes a small set of date and numeric capabilities - like
checking whether a date precedes another (used to find out how
long a company exists), respectively mirroring the calculations in
some of the natural language grant texts; as an example, during the
pandemic the “Hdrtefallfonds” asked whether the income exceeds
80% of some social security limit. See Fig. 3 for an abbreviated ex-
ample; for production use the part of the calculation that references
a common concept (e.g., the “sozialversicherungsrechtliche Hochst-
beitragsgrundlage”, the Social security maximum contribution base)
would be extracted in its own function.

4.5 Calculations for the Past

If a calculation must be run later on (to check its validity, an appli-
cation coming in the next calendar year, etc.), some concepts need
to know the application date. The previously mentioned “sozialver-
sicherungsrechtliche Hochstbeitragsgrundlage”, like many other law-
mandated values like tax limits, changes over time - but the value
that was valid at the date of application must be used (which could
be a few years in the past), so the function that encapsulates that
concept needs to take the application date into consideration.

1084 that an AND over 12 or more unknowns will never becomes a false, etc.

ELS 2024

4.6 Input/output type derivation and -checks

The POC implements the expected boolean operators (AND, OR, NOT)
as well as the G4C-specific atoms (like fetching the company legal
form, the place of the headquarter, etc.), and some numeric capa-
bilities. That means that grant descriptions (forms) have different
input and output types:

e AND, OR, NOT only accept boolean (resp. probability) values;

o the numeric operators expect numbers and return numbers;

e the output of data query functions (atomic propositions)
depends on the specific atom.

By using a small set of hard-coded input and output types, the
types of all forms in a grant can be fully derived and checked for
consistency; also, the expected value type of questions (see below)
can be automatically decided and the correct type of HTML input
field!! used in the questioning form. This is one area where having
some extra support from the Common Lisp compiler'? would be
a great plus: a stable, documented function to get the compiler-
derived types of (some) subforms and a list of type mismatches after
compilation. Because some macros are being used!?, association to
the source forms might become a challenge, though.

4.7 Interactively asking for Data

Not all data queried by grants is stored in government registers;
other data (in particular personal information, like number of dis-
abled employees) would skyrocket the costs if it was stored persis-
tently; and some items cannot be known in advance (eg., clauses

HLike <input type=text>, type=number, type=date, or radiobuttons.

12n0t all of them, of course -just one (SBCL) would be enough!

13Most notably for AND and similar, so that intermediate results get stored and associ-
ated to the subform - a function would only receive input values!

15

Grants4Companies: The Common Lisp PoC

;3 Im letzten abgeschlossenen Wirtschaftsjahr darf das Einkommen

;3 vor Steuern und Sozialversicherungsabgaben maximal
(<= (frage "Einkommen")
(*
;5 80%
0.8d0

ELS’24, May 6-7 2024, Vienna, Austria

;; der jahrlichen sozialversicherungsrechtlichen Hochstbeitragsgrundlage
;; betragen (https://www.oesterreich.gv.at/lexicon/H/Seite.991498.html).

(+ (x 12 5370)
;3 Sonderzahlung
10740)))

Figure 3: Numeric calculation.

that describe the application itself). To reduce the set of poten-
tially applicable grants it makes sense to ask a (limited) number of
questions regarding the most often used data items.

The POC includes a high-performance evaluation engine for
the grants (see below for details); this allows to recalculate the
applicable set of results for the (planned) set of about 3000 grants
in the backend and send results back to the frontend, interactively.
So when some question gets answered, a quick check with the
back-end allows to shrink the useful set of questions immediately,
reducing the cognitive load on the person using the interface.

As an example, see Fig. 4 for the form before a (too high) number
is put into row 2 (“Anzahl der Kinosdle"); as soon as the number
100 was acknowledged (typically by pressing Tab to get to the next
input field), the form data are sent to the POC, which recalculates
all grants that contain this question and replies with an update
regarding styles (colors) and availability of input boxes - see Fig. 5.
As the given value is too high, the conditions of the grant the data
is used in (here labelled "48") can not be fulfilled any more - so the
label’s background becomes red, and related inputs are immediately
disabled, as there’s no need to answer them any more; if there were
more questions for other grants, the cursor would move to the next
one (done automatically by the browser frontend).

Also, the list of questions is sorted by impact - the more grants’
results a question influences, the sooner it is listed.

4.8 Limited Reasoning - “What If”?

Before a Prolog interface was implemented, the POC got (limited)
exploration capabilities, giving simple “What If?” answers.

As an example, one computation checks whether a grant would
fail to apply because of (parametrized) number of clauses in it (kind
of deduplicated, in case they are used in multiple places in a grant,
like three AND branches all concerned with the ONACE and some
other stuff); this allows to check for things like “What do I need to
change to apply for other grants?”.

4.9 Performance

The Common Lisp POC, utilizing SBCL'* on standard x86-64 hard-
ware, compiles the grant forms to native code; for nested loops
over multiple (test) companies and about 30 grants (including fairly
complex ones, see the presentation) the evaluation time averages to
0.5psec (about 1000 CPU cycles). For ~600000 companies in Austria

https://sbcl.org

ELS 2024

a test cycle in a browser frontend therefore takes less than half a
second, facilitating true interactive grant development.

5 DATA SOURCES

The current sources for data about the companies in the produc-
tion environment are the “Unternehmensregister fiir die Zwecke der
Verwaltung” and the “Firmenbuch”, a public listing of companies.
These two registers provide general data about the company, but
in order to evaluate certain eligibility conditions other informa-
tion about the company might be required. Querying additional
registers providing this information is ongoing work.

To enable also the evaluation of conditions, for which no data
is available from an official source, in the POC we already drafted
the concept FRAGE (question), which asks data from the company
to answer grant forms (deduplicating questions, and not asking for
data that is irrelevant because it won't be used'>.

For the future, we're investigating to add other data sources
as well; most of these will (for legal reasons) require an explicit
consent from the company.

6 EXPERIENCE REPORT

Our experience matches documented history: Common Lisp is
a viable programming language for rapid prototyping. Using it
for production use still proves challenging - the strategic focus of
most companies is still fixed on Java, changing the multi-man-year
lore cannot be done in a day. While there are Prolog libraries for
Common Lisp!®, and even one that allows converting Lisp data to
Prolog syntax and forward the result to an implementation!”, none
of them completely fulfilled the requirements:

e bidirectional communication,

e parsing the Prolog output to provide a highlighted/clickable
display in the web UL,

o multiple parallel, independent sessions to concurrently test
different analyses,

e ability to export the Prolog input data for use in a separated
(offline), ISO-conformant Prolog system.

15For example, (AND (<some clause that evaluates to false>) (FRAGE "...")) doesn't
need to be asked for this grant — though another grant might require the same data
item and is not always rejected!

16See, e.g., [2], https://www.lispworks.com/documentation/Iw445/KW-W/html/kwpro
log-w-152.htm, https://github.com/nikodemus/screamer
7https://github.com/cl-model-languages/cl-prolog2

16

ELS’24, May 6-7 2024, Vienna, Austria

5relevante Fragen

Mind. 4 Betriebsinhaber®innen lt. lit. a?
Anzahl der Kinosale

Anzahl der Sitzplatze

hat eine gliltige Kinokonzession?

Wieviele Tage mit regularem Spielbetrieb?

Meue Daten vermerken

Forderung(en)

[4 [5] [g] [18]

Philipp Marek, Bjérn Lellmann, and Markus Triska

Eingabe

~ Ja O Mein ®unbekannt

[48] | J
(48] | ¢
[48] Ja O Nein ® unbekannt
(48] | d

Figure 4: Interactive queries, before answering.

5 relevante Fragen

Mind. 4 Betriebsinhaber®innen It. lit. a?
Anzahl der Kinosale
Anzahl der Sitzplatze

hat eine gliltige Kinokonzession?

Wieviele Tage mit regularem Spielbetrieb?

Forderung(en)

(4 [3] [g] [18]

Eingabe

1 Ja O Nein ® unbekannt

[48] 100 el
(48]
[48] Ja Nein ® unbekannt

&

Neue Daten vermerken

Figure 5: Interactive queries, after input.

So we ended up with our own implementation, using Scryer Prolog!®
as backend. The technical iterations proved to be easy; organisa-
tional/legistic changes (eg., having computer code on an equivalent
legal basis as the grant texts) are hard, and still being worked upon.
The bottleneck for broad usage is the translation from natural lan-
guage to computer code; work takes place to run first translations
via an Artificial Intelligence!®. Of course, to get some real legal
weight, a legal spokesperson would need to sign off the translated
computer code; designing processes (re-translating the code to
natural language for easier comparison again, having the sign-off
directly via a GIT commit, etc.) is another required major step
forward. Work continues...

7 CONCLUSION

By using plain text files with a reasonably simple syntax it is possible
to translate written law into computer-readable data that’s at the
same time usable as computer code. By using data sources that are
defined to contain valid and up-to-date data, a quick pre-selection
(ie. not showing grants that are known not to apply to a company)

Bhttps://www.scryer.pl

Efforts driven by the Ministry of Finance under the umbrella Law as Code, though
interest is found on the EU level as well, see https://joinup.ec.europa.eu/collection/bet
ter-legislation-smoother-implementation/news/new- course-law-code.

ELS 2024

can be provided to company owners. In the future, the fact-checking
that currently is done manually could possibly be avoided - either
by just providing the available data items in some secure form (a
digitally signed JSON-blob), or by simply signing a statement that
the company matches the requirements, obviating any need for
further checks.

REFERENCES

[1] J. Belzer, A.G. Holzman, and A. Kent. 1978. Encyclopedia of Computer Science and
Technology: Volume 10 - Linear and Matrix Algebra to Microorganisms: Computer-
Assisted Identification. Taylor & Francis.

[2] Giuseppe Cattaneo and Vincenzo Loia. 1988. A Common-LISP implementation of
an extended Prolog system. SIGPLAN Notices 23, 4 (1988), 87-102.

[3] Lounette M. Dyer. 1986. MUSE: An Integrated Software Environment for Com-
puter Music Applications. In Proceedings of the 1986 International Computer Music
Conference, ICMC 1986, Den Haag, The Netherlands, October 20-24, 1986. Michigan
Publishing, 167-172. https://hdl.handle.net/2027/spo.bbp2372.1986.033

[4] Stephen Cole Kleene. 1952. Introduction to Metamathematics. North-Holland,
Amsterdam.

[5] Bjoérn Lellmann, Philipp Marek, and Markus Triska. 2024. Grants4Companies:
Applying declarative methods for recommending and reasoning about business
grants in the Austrian public administration (System description). In Proceedings
of FLOPS2024 (accepted).

[6] William G. Wong. 1983. LISP for CP/M. Microsystems 4, 8 (1983), 30-43.

17

